Un quadrilatère est un polygone (donc une figure plane) constitué de quatre points (appelés sommets) et de quatre segments (ou côtés) liant ces sommets deux à deux de manière à délimiter un contour fermé.

Tout rectangle peut servir à constituer un pavage du plan. Cela signifie qu'il est possible, avec des rectangles identiques, de recouvrir tout le plan sans superposer deux rectangles. Des droites perpendiculaires partagent le plan en zones rectangulaires.

Les côtés d'un rectangle étant deux à deux de même longueur a et b, il est d'usage d'appeler dimensions du rectangle ces deux nombres. Le plus grand est la longueur du rectangle, le plus petit sa largeur.

Un rectangle de côtés a et b possède une aire égale à a × b, et un périmètre de 2 × (a + b). La somme a + b est parfois appelée demi-périmètre du rectangle.

L'application du théorème de Pythagore permet de constater que les diagonales du rectangle sont égales et mesurent

Deux rectangles qui ont même longueur a et même largeur b sont isométriques. Cela signifie qu'ils sont superposables : l'un des deux peut être transformé en l'autre par une succession de translations, rotations ou retournements. Le quotient a/b est appelé format du rectangle. Tous les rectangles de formats égaux sont semblables : il existe un agrandissement (ou une réduction) permettant de passer de l'un à l'autre. Autrement dit, ils ont « la même forme ». Comme la longueur est supérieure ou égale à la largeur, le format est un nombre supérieur ou égal à 1. Un format égal à 1 est caractéristique d'un carré. Plus le format est grand, plus le rectangle est « allongé ».

Soit R un rectangle de largeur b et de longueur a. Alors la distance de Hausdorff entre R et sa frontière (topologie) est égale à b/2. Elle est réalisée pour tout KL où K est un point d'un segment de longueur a-b inclus dans la médiane relative à la largeur et L le projeté orthogonal de K sur une longueur du rectangle. Cette distance est utile pour calculer la distance de Hausdorff entre deux itérés successifs du tapis de Sierpinski associé à un rectangle.

2800+ free images for students, parents & teachers!
All pictures can be used free of charge for personal, non-commercial use.
As a teacher you may also use them free of charge in your classroom.
©2018-2021 Joopita Reseach a.s.b.l
Help us to create new images and to keep this free site running by making a donation – thank you!