Freely usable photos

Most pictures found here can be freely reused by students and teachers.
Pentagone

Le terme « pentagone » dérive du latin pentagonum de même sens, substantivation de l'adjectif pentagonus, lui-même emprunté au grec ancien, πεντάγωνος (pentágônos), « pentagonal », « qui a cinq angles, cinq côtés ». Le terme grec est lui-même construit à partir de πέντε (pénte), « cinq », et γωνία (gônía), « angle ».

Un pentagone inscrit dont les arêtes et l'aire sont des nombres rationnels est appelé pentagone de Robbins (en). Les longueurs de ses diagonales sont soit toutes rationnelles, soit toutes irrationnelles ; on conjecture qu'elles doivent être toutes rationnelles.

Il est possible de construire les deux pentagones réguliers à la règle et au compas. De nombreuses méthodes existent, l'une d'elles étant déjà connue d'Euclide au III siècle av. J.-C..

Une méthode par pliage simple permet de construire un pentagone régulier : il suffit de prendre une bande de papier suffisamment longue, d'initier une boucle, d'y passer une extrémité et de serrer en ajustant.

Le graphe complet K5 est souvent dessiné sous forme d'un pentagramme inscrit dans un pentagone régulier convexe. Ce graphe représente également la projection orthogonale des 5 arêtes et 10 sommets du pentachore, un polytope régulier convexe en dimension quatre.

Il n'est pas possible de paver le plan euclidien par des pentagones réguliers convexes. Il est en revanche possible de le paver par des pentagones quelconques. En 2015, on connait 15 types de pavages pentagonaux isoédraux (en), c'est-à-dire employant un même type de tuile. On ignore s'il en existe d'autres.

2800+ free images for students, parents & teachers!
All pictures can be used free of charge for personal, non-commercial use.
As a teacher you may also use them free of charge in your classroom.
©2018-2021 Joopita Reseach a.s.b.l
Help us to create new images and to keep this free site running by making a donation – thank you!